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Two-dimensional ideal magnetohydrodynamics and 
differential geometry 
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Abstract It is shown that equations of hvodimensional ideal magnetohydrodynamics may be 
regarded as geodesic equations on appropriate infinite dimensional Lie gmup. The physical 
interpretation of such a geometric picture is given using an analogy with two-and-a-half- 
dimensional ideal hydrodynamics. The sectional curvature responsible for the separation of 
neighbouring geodesics and. hence, for stability is calculated. 

It is well known that a universal construction exists which allows to associate to arbitrary 
Lie group G with a Lie algebra g a quadratically nonlinear dynamical system on the dual 
space g*, once a mapping g + g* (a metric) is introduced. The resulting generalized 
Euler equations read 

(1) hi + g~'c,:.oko, = 0 

where o; E g*, i = 1.2,. . .; Cb are the structure constants of g in some basis and g" are 
the components of the metric (a summation over repeated indices is assumed hereafter). The 
well- known examples of this construction are a rigid body motion and its generalizations 
from original group of three-dimensional rotations to an arbitrary classical Lie group [1,21. 
The most transparent infinite-dimensional example is that of the hydrodynamics of an ideal 
incompressible fluid (MD) when the group is a group of volume-preserving diffeomorphisms 
of a domain of some fluid flow. In the case of periodic boundary conditions (BC) the indices 
in (1) are just the Fourier-indices. It is also known [l] that equation (1) admits another 
reading. Namely, by right- (left-) hand shifts the metric may be transported to an arbitrary 
point of a group manifold, hence providing a Riemannian structure for the latter. Then 
equation (1) is equivalent to a geodesic equation for this manifold and, in this way, it 
quires a variational meaning. In physical terms these two descriptions of the same system 
correspond to Eulerian and Lagrangian viewpoints, respectively: 

The co-adjoint orbit (i.e. a manifold obtained from arbitrary point belonging to g* 
by all possible group transformations) serves as a phase space and provides a symplectic 
(Hamiltonian) structure for (1). so its geometry is crucial for Eulerian stability analysis 
[l,  31, while a Riemannian geometry of the group as a whole comes into play when the 
question of Lagrangian stability is addressed. For example [I], the curvature of the group 
is responsible for a behaviour of the neighbouring geodesics. 

In the context of fluid dynamics, besides the MD itself, a number of fundamental systems 
have the form (1). In particular, it is known [3, 41 that equations of two-dimensional 
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ideal magnetohydrodynamics (IMHD) in terms of vorticity and magnetic potential are of 
the form (1) with structure constants being those of a semi-direct product of symplectic 
diffeomorphisms of D and functions on D, where 2, denotes a flow domain. 

In the present paper our purpose is to apply a 'geodesic' approach, first announced 
in [51, for 2D IMHD. First, we shall try to understand the physical meaning of such a 
description. We would like to remind the reader that in the case of IHD the geodesics lie in the 
space of volume-preserving dieomolphisms and the group coordinates are identified with 
the Lagrangian coordinates of the fluid particles (modulo the incompressibility constraint) 
[l, 5, 61. However, in the present case the Lagrangian coordinates in a plane are not 
sufficient, since we can describe only a subgroup (namely, symplectic diffeomorphisms) in 
this way and not the group as a whole. 

The equations of ideal (no viscosity, infinite conductivity) incompressible 2D MHD with 
magnetic field in the plane result from the full three-dimensional (30) equations 
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w + v . vv - h. Vh+Vp' = 0 

rl - v x (v x h) = 0 (2) 
V . v = V . h = O  

when one supposes that v and h are ZD vectors independent (as well as p*)  of the third 
coordinate z. Introducing the magnetic potential a, streamfunction @ and vorticity o 

v=sgrad@ h=sgrada w = - A @  (3) 

one obtains (J denoting a Iambian) 

h + J(o, @) - J ( a ,  Aa) = 0 

U + J ( a ,  @) = 0. 
(4) 

We would like to emphasize a rather obvious fact that although the system (4) is formally 
two-dimensional, it nevertheless describes a three-dimensional physics. Indeed, from 
Ampere's law V x h = j and the fact that h is a vector lying in the x-y plane, it 
follows that there is a non-vanishing ( but z-independent) component of an electric current 
j in the z-direction orthogonal to the plane. The infinitesimal group action on the fields o 
and a is given by the following transformation [4]: 

here x and U are arbitrary smooth functions-infinitesimal parameters of the transformation. 
The structure constants may be extracted from the commutator of these transformations, and 
equations (4) are of the form (1) if an energy (kinetic + magnetic) functional 

is chosen as a metric. Assuming for simplicity periodic BC and zero mean values for 
vorticity and magnetic potential we may invert the Laplacian 

@ = -A-". 

Since the metric, by definition, relates g* and g, i.e. the co-adjoint and adjoint 
representations, the streamfunction @ and the current j = -Aa belong to the latter and 
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transform according to the following formulas: 

The finite transformations are given by an exponentiation of (5) or (7) and parameters of 
these finite transformations are the coordinates on the group manifold These transformations 
were obtained in [4] using the fundamental representation of the group realized on Clebsch- 
l i e  variables. 

Now if we want, according to the aforementioned general philosophy, to consider 
equation (4) as a geodesic equation on the group manifold, the question arises what is 
the meaning of a coordinate related to the u-transformation in (5), (7). As to the ,,y- 
transformation, its meaning is clear: it corresponds to an area-preserving change of variables, 
and the corresponding group coordinate is a Lagrangian coordinate of the fluid pmicle on 
the plane (of the two Lagrangian coordinates X ( x ,  y). Y ( x ,  y) only one is independent due 
to incompressibility). To answer this question we shall use a realization of the group action 
different from the one used in [4]. It is based on the above-mentioned fact that 2D IMHD is 
in fact ‘two-and-a-half -dimensional. We start from a simple heuristic argument. Take the 
3D Euler equations 

(8) v + v. v v  + vp = 0 v . v = 0 

where V is a 3D vector ( V I ,  u2, W), and suppose that nothing depends on z-coordinate. The 
equations of two-and-a-half-~mensional IHD follow 

it + 21. vv + vp = 0 

*+ W. vw = 0 

v . v = o  
where ail the vectors are now two-dimensional. This is, of course, equivalent to 

L, + J ( W ,  +) = 0 

W + J(W, +) = 0 .  

The kinetic energy is 

The similarity between (10) and (4) becomes obvious once one rewrites the first equation 
in (IO) as 

L,+ J ( 0 ,  +) - J(W, -W) = o .  (12) 

The only difference between the two systems is a choice of the metric: -A + 1 in the 
second term in the Hamiltonian. The conclusion that the group structure is the same for 
both systems follows also from the fact that applying (with an obvious change a -+ W) the 
magnetohydrodynamical Poisson bracket [4] 
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to the Hamiltonian (11) one obtains equations (10). However, the Poisson bracket is a 
Kirillov bracket and is completely defined by the Lie algebra. Therefore, these latter are 
the same for both systems. Yet another demonstration comes from the fact that if one takes 
a Lie algebra of 3D divergenceless vector fields, which is defined by the commutator 

[V,lJ] = v. vu - U .  vv (14) 
and restricts these fields to having the form 

v = (v, W) 
(the operator nabla in this formula is two-dimensional), a straightforward calculation shows 
that one obtains a subalgebra of the initial algebra, which coincides with the algebra of 
infinitesimal transformations (7). where j corresponds to W and @ is a sueamfunction of 
2). As was mentioned before, the group of 3D volume-preserving diffeomorphisms which 
has equation (14) as its Lie algebra is parametrized by Lagrangian coordinates of fluid 
particles X ( x ,  y.  z ) .  Y ( x ,  y, z ) .  Z(x, y.  z) (subject to the incompressibility constraint). In 
addition, the subgroup in question is parametrized by these coordinates, but now they are 
z-independent 

Returning to ZD IW, we see that as its group manifold is the same it may be described 
by the same coordinates, namely a shift in the new coordinate (with respect to Lagrangian 
coordinates on the plane) is generated by the current j in the same way as a shift in z is 
generated by the vertical velocity W .  Therefore, this new coordinate is related to a charge 
transpor& in the system. However, although the coordiites are the same the Riemannian 
structure and, as a consequence, the behaviour of the geodesics are different, owing to the 
difference in metrics. 

Let us turn now to technical aspects of the 'geodesic' description of IMHD. At least on 
the heuristic level, a formalism developed in the classical paper [l] may be applied to an 
arbitrary infinite-dimensional Lie group. Once shucture constants and a metric are. given, 
one may calculate a CulyaNre tensor and, hence, determine a divergence of the neighbouring 
geodesics. But, unlike the case of IHD where separation of geodesics is directly related to a 
separation of fluid particles [6] ,  the geodesics now have a new degree of freedom and may 
diverge in the new dimension related to charge transport 

Let us consider, following [I], a Riemannian structure generated by some right-invariant 
metric on a Lie group. Suppose that the structure constants in a basis formed by vectors eA 
are 

v . v = 0 21 = v(x,  y) = (U,, v2) w = W(n,  y) 

(15) c [ea, ea1 = CABec 

@A, eB) gAB (16) 
one may obtain a Riemannian structure on the group considering a right- invariant metric, 
defined on the right-invariant vector fields corresponding to eA. A covariant derivative 
compatible with this metric may be calculated in the vicinity of the unit element of the 
group 

eA E g A =  1,2,. . . . 
Introducing in the Lie algebra a metric defined by the tensor gAB 

c veAeB E VAeB = rABec 

r A B  - - g gEB - 8  BD gEA) . 
C D  E CDcE (17) 

Here r'&, are the coefficients of the symmetric connection. The components of a curvature 
tensor are 

(18) 

c -1 c 

RKLMN = -(vxvmd - VLVxeM - v[ex,e&M, e d  . 
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Consider now the IMHD case. An element of the Lie algebra has two components (each 
being in tum an infinite-dimensional vector): a hydrodynamic one (a streamfunction) 
and a magnetic one (a current). Let us denote Fourier-components of the corresponding 
basis vectors as e, ('non-primed') and e,, ('primed'). To simplify the notation, we shall 
use hereafter the small italic letters m, n,  . . . ; m', n', . . . to denote vector Fourier-indices: 
n = (nl, nz); n x m = nlmz - nzml. For the structure constants in this basis we have 

C:, = n  x m S(k - n  - m )  

C:,, = n x m' S(k' - n - m') 

c;,, = c;,,, = e,":, = 0. 

The components of the metric tensor follow from (6) 

g,, = n%(n + m) 

gnm = n-'S(n + m) 

gn,,, = n"'S(n' + m') 

g""' = nn8(n' + m') 

g,,, = 0 

g"" = o . (20) 

From (17), (19). (20) we obtain 

n x m ( n + m ) - m  
(n  + mY One, = e n t m  

m' x n [ (n 
Vmjen = - 1 -  e("+,'). 2 

where e,.+., on the right-hand side of the second equation is a non-primed basis vector. 
We also give the corresponding formulas for the case of two-and-a-half-dimensional IHD 

g,, = n%(n + m )  g.,,) = 8(n' + m') grim, = 0 
(22) 

grim n-'S(n + m) gn'" = 8(n' + m )  gn" = o 

v.,e,, = 0 one,, = n x m' v,,e. = 0 . 
Now we are able to calculate a curvature tensor, according to (1 8). The 'hydrodynamic' 

components Rumn of this tensor are, evidently, the same as in 2D IHD (cf [I]). However, 
new contributions appear. Let us calculate, for example, a mixed-component Rp,,pn 

Rt,/nt,n -(VtVrem, - Vf Vvem, - V[ekr,e,jem,, en) 

(W - (Vie,,, b e n )  - (vtem,, Vie,) +C;:,(v,,e,,. en) . 
Consider first the case of two-and-a-half-dimensional IHD. Since all the covariant 

derivatives in 'primed' directions are zero (which corresponds to the fact that vertical and 
horizontal velocities do not interact in eqs. (10)). all the mixed components of the curvature 
tensor vanish. Thus, the group manifold is flat in all sections containing a 'primed' direction. 

- 
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Consider now the IMHD case. All thw. terms in (24) are non-vanishing. The first one 
gives 

(Vie,,, h e . )  

E -S (k '+ l+m'+n)&i , f ; ,  
where 

The second term gives 

The third term in (24) is 

Now let us calculate the curvature of a section defined by the cument j = cos k' . x (all 
non-primed components are zero) and arbitrary streamfunction (all primed components are 
zero), i.e by the pair of vecton 

To do this we need the following combination: 

K(G* V )  = Rktlmdk'k.1116mm.lln 

- - 
4- Ru.r.-k,.-!XlX-I + R-P, I ,~ , . - IX IX- I ]  . (30) 

Here 
Rkqmrn &!lmrn8(k' 4- 1 m' 4- n)  . 

The conhibution (27) is proportional to (k' x m'), so it does not give rise to (30) where 
only the terms with m' = f k '  enter. Using equations (25). (28) and the fact that 

(31) 
we obtain for the sectional curvature (the calculation is similar to one given in lemma 11 
of [I], for which we deliberately kept similar notation) 

f 
fl:-k*f[-k2 = fi-W,k'f;-2kr,k' 

2 - 211 x k')* - - - )]lXI -x I *2 ' l  (,12 (1 + k')2 

1 2 [ ( I  + kT2 + PI2 - (2k")2 2 = -c (1 x K )  .kf4(i + k')2 16 I 
1x1 -x1+wI . 
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It follows from this formula that the curvature for the section (29) is positive for perturbations 
with high enough wavenumbers (if 111 z ZIP[) but may be negative for low wavenumber 
ones. This means that the 'purely magnetic' geodesic e (29) does not exhibit an instability 
with respect to high-wavenumber perturbations of 'purely hydrodynamic' type. On the 
contrary, all the sections containing a flow of this form in pure IHD have negative curvature- 
and the geodesic is absolutely unstable [l]. 

In conclusion, we have shown that analogously to the case of IHD the IMHD admits a 
geodesic interpretation. In the present paper we have limited ourselves to the 2~ case. Them 
are two major reasons for this. First, there is a certain difference between hydrodynamics 
in even and odd dimensions 171, so, although it is clear that three-dimensional MHD admits 
a geometric interpretation as well, it will be somewhat different Second, an algebraic 
structure analogous to that of ZD IMHD appears in other physically meaningful (quasi-) 
bidimensional systems: a Boussinesque stratified fluid [SI and axisymmetric flows with 
swirl [9]. Of course, we report here a first step in the 'geometric' approach to MHD; the 
physical consequences of the positiveness or negativeness of the curvature of the section 
containing a given flow need to be investigated more thoroughly. We plan to do this in a 
subsequent publication. 
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